3.557 \(\int \frac{\sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx\)

Optimal. Leaf size=204 \[ -\frac{2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{b d}-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b^2 d} \]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*
Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c +
 d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.156083, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3837, 3832, 4004} \[ -\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b^2 d}-\frac{2 \sqrt{a+b} \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*
Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c +
 d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a
+ b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d)

Rule 3837

Int[csc[(e_.) + (f_.)*(x_)]^2/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> -Int[Csc[e + f*x]/Sqrt[
a + b*Csc[e + f*x]], x] + Int[(Csc[e + f*x]*(1 + Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, e
, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx &=-\int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx+\int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx\\ &=-\frac{2 (a-b) \sqrt{a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac{2 \sqrt{a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b d}\\ \end{align*}

Mathematica [B]  time = 18.6494, size = 2189, normalized size = 10.73 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sec[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(2*(b + a*Cos[c + d*x])*Tan[c + d*x])/(b*d*Sqrt[a + b*Sec[c + d*x]]) + ((-(1/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Se
c[c + d*x]])) - (a*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (a*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/
(b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Sec[c + d*x]]*(-2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]
 + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a
 + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/
(b*d*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[1 + Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*((a*Sin[c + d*x]*(-2*(a +
 b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[Ar
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b
)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a
*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(2*b*((1 + Cos[c + d*x])^(-1))^(3/2)*(b + a*Cos[c + d*x])
^(3/2)*Sqrt[1 + Sec[c + d*x]]) - (3*Sin[c + d*x]*(-2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a
*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]
 + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a
 + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/
(2*b*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[b + a*Cos[c + d*x]]*Sqrt[1 + Sec[c + d*x]]) - (Sec[c + d*x]*(-2*(a + b
)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcS
in[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]
*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (b + a*C
os[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*Tan[c + d*x])/(2*b*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[b +
a*Cos[c + d*x]]*(1 + Sec[c + d*x])^(3/2)) + (-((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 - ((a + b)*Sqrt[(b +
 a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*
x]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1
+ Cos[c + d*x])] - ((a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/
(a + b)]*Sec[c + d*x]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/
((a + b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] + a*Sec[(c + d*x)/2]^
2*Sin[c + d*x]*Tan[(c + d*x)/2] - (b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 + (b*Sec[(c + d*x
)/2]^2*Sec[c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))])/(Sq
rt[1 - Tan[(c + d*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) - ((a + b)*Sqrt[Cos[c + d*x]/(1 + C
os[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sec[c + d*x]*Sqrt[1 -
 ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2] - 2*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c
+ d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(
a + b)]*Sec[c + d*x]*Tan[c + d*x] + 2*b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]*Sqrt
[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))]*Tan[c + d*x] - b*EllipticF[A
rcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[c + d*x]^2*((1 + Sec[c + d*x])^(-1))^(3/2)*Sqrt[(a + b*Sec[c + d
*x])/((a + b)*(1 + Sec[c + d*x]))]*Tan[c + d*x] + (b*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[
c + d*x]*Sqrt[(1 + Sec[c + d*x])^(-1)]*((b*Sec[c + d*x]*Tan[c + d*x])/((a + b)*(1 + Sec[c + d*x])) - (Sec[c +
d*x]*(a + b*Sec[c + d*x])*Tan[c + d*x])/((a + b)*(1 + Sec[c + d*x])^2)))/Sqrt[(a + b*Sec[c + d*x])/((a + b)*(1
 + Sec[c + d*x]))])/(b*((1 + Cos[c + d*x])^(-1))^(3/2)*Sqrt[b + a*Cos[c + d*x]]*Sqrt[1 + Sec[c + d*x]])))

________________________________________________________________________________________

Maple [B]  time = 0.311, size = 639, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x)

[Out]

-2/d/b*(cos(d*x+c)+1)^2*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(cos(d*x+c)*EllipticF((-1+cos(d*
x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+
1))^(1/2)*sin(d*x+c)*b-cos(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*a-cos(d*x+c)*EllipticE((-1+cos(d*x+
c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*sin(d*x+c)*b+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*sin(d*x+c)-(co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d
*x+c),((a-b)/(a+b))^(1/2))*b*sin(d*x+c)+a*cos(d*x+c)^2-a*cos(d*x+c)+b*cos(d*x+c)-b)/sin(d*x+c)^5/(b+a*cos(d*x+
c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\sqrt{a + b \sec{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{\sqrt{b \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)